33 research outputs found

    Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice

    Get PDF
    EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity during development and in matured nervous system, have recently been implicated in processing of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that may contribute to the neuropathic pain and morphine dependence have not been identified. Here we demonstrate that the subtype EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine. The results showed that peripheral nerve injury produced thermal hyperalgesia in wild-type (EphB1+/+) control littermate mice, but not in EphB1 receptor homozygous knockout (EphB1-/-) and heterozygous knockdown (EphB1+/-) mice. Hyperalgesia in the wild-type mice was inhibited by intrathecal administration of an EphB receptor blocking reagent EphB2-Fc (2 ÎŒg). Intrathecal administration of an EphB receptor activator ephrinB1-Fc (1 ÎŒg) evoked thermal hyperalgesia in EphB1+/+, but not EphB1-/- and EphB1+/- mice. Cellularly, nerve injury-induced hyperexcitability of the medium-sized dorsal root ganglion neurons was prevented in EphB1-/- and EphB1+/- mice. In chronically morphine-treated mice, most of the behavioral signs and the overall score of naloxone-precipitated withdrawal were largely diminished in EphB1-/- mice compared to those in the wild-type. These findings indicate that the EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine and suggest that the EphB1 receptor is a potential target for preventing, minimizing, or reversing the development of neuropathic pain and opiate dependence

    Threshold-Free Population Analysis Identifies Larger DRG Neurons to Respond Stronger to NGF Stimulation

    Get PDF
    Sensory neurons in dorsal root ganglia (DRG) are highly heterogeneous in terms of cell size, protein expression, and signaling activity. To analyze their heterogeneity, threshold-based methods are commonly used, which often yield highly variable results due to the subjectivity of the individual investigator. In this work, we introduce a threshold-free analysis approach for sparse and highly heterogeneous datasets obtained from cultures of sensory neurons. This approach is based on population estimates and completely free of investigator-set parameters. With a quantitative automated microscope we measured the signaling state of single DRG neurons by immunofluorescently labeling phosphorylated, i.e., activated Erk1/2. The population density of sensory neurons with and without pain-sensitizing nerve growth factor (NGF) treatment was estimated using a kernel density estimator (KDE). By subtraction of both densities and integration of the positive part, a robust estimate for the size of the responsive subpopulations was obtained. To assure sufficiently large datasets, we determined the number of cells required for reliable estimates using a bootstrapping approach. The proposed methods were employed to analyze response kinetics and response amplitude of DRG neurons after NGF stimulation. We thereby determined the portion of NGF responsive cells on a true population basis. The analysis of the dose dependent NGF response unraveled a biphasic behavior, while the study of its time dependence showed a rapid response, which approached a steady state after less than five minutes. Analyzing two parameter correlations, we found that not only the number of responsive small-sized neurons exceeds the number of responsive large-sized neurons—which is commonly reported and could be explained by the excess of small-sized cells—but also the probability that small-sized cells respond to NGF is higher. In contrast, medium-sized and large-sized neurons showed a larger response amplitude in their mean Erk1/2 activity

    Identification of calcium-binding proteins associated with the human sperm plasma membrane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation process, still remain to be fully understood. Here, we investigated the repertoire of calcium-regulated proteins associated with the human sperm plasma membrane.</p> <p>Methods</p> <p>Surface specific radioiodination was combined with two-dimensional gel electrophoresis, a 45Ca-overlay assay, computer assisted image analysis and mass spectrometry to identify calcium-binding proteins exposed on the human sperm surface.</p> <p>Results</p> <p>Nine acidic 45Ca-binding sperm proteins were excised from stained preparative 2D gels and identified by mass spectrometry. Five of the calcium binding proteins; HSPA2 (HSP70-1), HSPA5 (Bip), HYOU1 (ORP150), serum amyloid P-component (SAP) and protein kinase C substrate 80K-H (80K-H) were found to be accessible to Iodo-Bead catalyzed 125I-labelling on the surface of intact human sperm. Agglutination and immunofluorescence analysis confirmed that SAP is situated on the plasma membrane of intact, motile sperm as well as permeabilized cells. Western blot analysis showed increased phosphorylation of human sperm 80K-H protein following in vitro capacitation. This is the first demonstration of the 80K-H protein in a mammalian sperm.</p> <p>Conclusion</p> <p>The presence of SAP on the surface of mature sperm implies that SAP has a physiological role in reproduction, which is thought to be in the removal of spermatozoa from the female genital tract via phagocytosis. Since 80K-H is a Ca2+-sensor recently implicated in the regulation of both inositol 1,4,5-trisphosphate receptor and transient receptor potential (TRP) cation channel activities, its detection in sperm represents the first direct signaling link between PKC and store-operated calcium channels identified in human sperm.</p

    Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels.

    No full text
    The acrosome reaction, the first step of the fertilization, is induced by calcium influx through Canonical Transient Receptor Potential channels (TRPC). The molecular nature of TRPC involved is still a debated question. In mouse, TRPC2 plays the most important role and is responsible for the calcium plateau. However, TRPC1 and TRPC5 are also localized in the acrosomal crescent of the sperm head and may participate in calcium signaling, especially in TRPC2-deficient mice. Activation of TRPC channels is an unresolved question in germ and somatic cells as well. In particular, in sperm, little is known concerning the molecular events leading to TRPC2 activation. From the discovery of IP3R binding domains on TRPC2, it has been suggested that TRPC channel activation may be due to a conformational coupling between IP3R and TRPC channels. Moreover, recent data demonstrate that junctate, an IP3R associated protein, participates also in the gating of some TRPC. In this study, we demonstrate that junctate is expressed in sperm and co-localizes with the IP3R in the acrosomal crescent of the anterior head of rodent sperm. Consistent with its specific localization, we show by pull-down experiments that junctate interacts with TRPC2 and TRPC5 but not with TRPC1. We focused on the interaction between TRPC2 and junctate, and we show that the N-terminus of junctate interacts with the C-terminus of TRPC2, both in vitro and in a heterologous expression system. We show that junctate binds to TRPC2 independently of the calcium concentration and that the junctate binding site does not overlap with the common IP3R/calmodulin binding sites. TRPC2 gating is downstream phospholipase C activation, which is a key and necessary step during the acrosome reaction. TRPC2 may then be activated directly by diacylglycerol (DAG), as in neurons of the vomeronasal organ. In the present study, we investigated whether DAG could promote the acrosome reaction. We found that 100 microM OAG, a permeant DAG analogue, was unable to trigger the acrosome reaction. Altogether, these results provide a new hypothesis concerning sperm TRPC2 gating: TRPC2 activation may be due to modifications of its interaction with both junctate and IP3R, induced by depletion of calcium from the acrosomal vesicl
    corecore